Abstract
The benefits of laser welding include higher production values, deeper penetration, higher welding speeds, adaptability, and higher power density. These characteristics make laser welding a superior process. Many industries are aware of the benefits of switching to lasers. For example, metal-joining is migrating to modern industrial laser technology due to improved yields, design flexibility, and energy efficiency. However, for an industrial process to be optimized for intelligent manufacturing in the era of Industry 4.0, it must be captured online using high-quality data. Laser welding of aluminum alloys presents a daunting challenge, mainly because aluminum is a less reliable material for welding than other commercial metals such as steel, primarily because of its physical properties: high thermal conductivity, high reflectivity, and low viscosity. The welding plates were fixed by a special welding fixture, to validate alignments and improve measurement accuracy, and a Computer-Aided Inspection (CAI) using 3D scanning was adopted. Certain literature has suggested real-time monitoring of intelligent techniques as a solution to the critical problems associated with aluminum laser welding. Real-time monitoring technologies are essential to improving welding efficiency and guaranteeing product quality. This paper critically reviews the research findings and advances for real-time monitoring of laser welding during the last 10 years. In the present work, a specific methodology originating from process monitoring using Computer-Aided Inspection in laser-welded blanks is reviewed as a candidate technology for a digital twin. Moreover, a novel digital model based on CAI and cloud manufacturing is proposed.
Subject
Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献