Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals

Author:

Dhungana BipasyanaORCID,Lohani Sunil PrasadORCID,Marsolek Michael

Abstract

A shift from a linear economy to a circular economy of resource consumption is vital for diverting the value from lost resources to resource-efficient products towards developing a sustainable system. Household digesters provide one opportunity to create a biogas-based circular economy. Because household digesters are typically fed a wide and variable range of substrates, it is important to determine the ideal mixing ratios for them. In this study, an anaerobic digester startup process was analyzed and an assessment of anaerobic co-digestion of food waste with different livestock manures was carried out at ambient temperatures. Food waste (FW), cow manure (CM), poultry litter (PL) and goat manure (GM) were co-digested at mixing ratios (FW:PL:CM) of 2:1:1, 2:2:1, 1:1:2, 1:1:1 (wt/wt) and FW:PL:GM at mixing ratios of 2:1:1 and 1:1:2, at an organic loading rate of 1 g volatile solid (VS)/L/day, and 8% total solids. A maximum methane yield was obtained from co-digestion of FW:PL:GM at a mixing ratio of 2:1:1 in autumn-to-winter conditions, 21–10 °C, while the mixing ratio of FW:PL:CM at 2:2:1, showed negligible methane production under the same temperature condition. This study suggests that co-digestion of food waste and poultry litter with goat manure yields more biogas than other substrate combinations. Therefore, selecting suitable co-substrates with an optimized mixing ratio can promote several key indicators of a biogas-based circular economy towards achieving sustainable development goals 2, 3, 5, 6, 7, 9, 13 and 15.

Funder

EnergizeNepal

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference74 articles.

1. Food Wastage Footprint: Impacts on Natural Resourceshttp://www.fao.org/nr/sustainability/food-loss-and-waste/en/

2. FAO Report on Extent of Food Losses and Wastehttp://www.fao.org/docrep/014/mb060e/mb060e02.pdf

3. Asian Development Bank (ADB) Solid Waste Management in Nepal: Current Status and Policy Recommendationshttp://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKL200509001593.htm

4. Report on Waste Management Baseline Survey of Nepal,2020

5. Small-scale biogas technology and clean cooking fuel: Assessing the potential and links with SDGs in low-income countries – A case study of Nepal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3