Abstract
Constructed wetlands (CWs), including floating treatment wetlands (FTWs), possess great potential for treating excessive nutrients in surface waters, where, however, the ubiquitous presence of antibiotics, e.g., enrofloxacin (ENR), is threatening the performance of CWs. In developing a more efficient and resilient system, we explored the responses of the FTW to ENR, using tank 1, repeatedly exposed to ENR, and tank 2 as control. Plant growth and nutrient uptake were remarkably enhanced in tank 1, and similar phosphorus removal rates (86~89% of the total added P) were obtained for both tanks over the experimental period. Contrarily, ENR apparently inhibited N removal by tank 1 (35.1%), compared to 40.4% for tank 2. As ENR rapidly decreased by an average of 71.6% within a week after each addition, tank 1 took only 4 weeks to adapt and return to a similar state compared to that of tank 2. This might be because of the recovery of microbial communities, particularly denitrifying and antibiotic-resistance genes containing bacteria, such as Actinobacteria, Patescibacteria, Acidovorax and Pseudomonas. After three ENR exposures over six weeks, no significant differences in the nutrient removal and microbial communities were found between both tanks, suggesting the great resilience of the FTW to ENR.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献