Relationship between Remotely Sensed Ambient PM10 and PM2.5 and Urban Forest in Seoul, South Korea

Author:

Park JincheolORCID,Lee Peter Sang-HoonORCID

Abstract

Currently particulate matter (PM) is one of the major threats to public health and safety in urban areas such as Seoul, South Korea. The limited amount of air-quality monitoring systems may not provide sufficient data or coverage, in particular on the spots of urban forest. Considering urban forest as a possible contributor to mitigate PM in an urban area, this study investigated the relationship between the size and topography of urban forests near the air-quality monitoring stations and PM measurements from those stations. The average of PM measurements during the study period of August 2017 to July 2019 was computed into three different domains by using three concentric buffers from 25 monitoring stations distributed across Seoul. To estimate PM concentrations, multiple linear regression models were developed by using satellite-borne multi-spectral band data retrieved from Moderate Resolution Imaging Spectroradiometer onboard Terra (MODIS) and Landsat 8 in conjunction with meteorological data sets. Overall, PM10 and PM2.5 measurements significantly varied with season and tended to be lower with large urban forests than small ones by 5.3% for PM10 and 4.8% for PM2.5. Overall, PM10 and PM2.5 measurements were lower at the domains encompassing high urban forests in elevation than those of relatively flattened forests by 9.1% for PM10 and 3.9% for PM2.5. According to the findings from this study, the topographical difference among urban forests could exert a more significant influence on PM mitigation. The result from correlation analysis between the PM estimates from Landsat 8-based models and ground-based PM measurements was considered reliable based on Pearson’s coefficients of 0.21 to 0.74 for PM10 and −0.33 to 0.74 for PM2.5. It was considered that using a satellite imagery-derived PM model could be effective to manage urban forest over a large area which in general implies the limitation of data collection.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Forestry

Reference37 articles.

1. Climate Change 2014: Mitigation of Climate Change,2014

2. 2016 Ambient Air Pollution: A Global Assessment of Exposure and Burden of Diseasehttps://apps.who.int/iris/handle/10665/250141

3. Spatial injustice of particulate matter: the case of California

4. Spatio-temporal boundary effects on pollution-health costs estimation: the case of PM2.5 pollution in Hong Kong

5. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3