Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile

Author:

Olmedo Guillermo F.ORCID,Guevara MarioORCID,Gilabert Horacio,Montes Cristián R.ORCID,Arellano Eduardo C.ORCID,Barría-Knopf Beatriz,Gárate Francisco,Mena-Quijada PabloORCID,Acuña EduardoORCID,Bown Horacio E.,Ryan Michael G.

Abstract

Forest plantations have a large potential for carbon sequestration, playing an important role in the global carbon cycle. However, despite the large amount of research carried out worldwide, the absolute contribution of forest plantations is still incomplete for some parts of the world. To help bridge this gap, we calculated the amount of C stock in three fast growing forest species in Chile. Carbon pools in above-ground and below-ground biomass, forest floor, and soil were considered for this analysis. Across the plantation forests of Chile, carbon accumulated in the above-ground biomass was 181–212 Mg · ha−1 for Pinus radiata, 147–180 Mg · ha−1 for Eucalyptus nitens, and 95–117 Mg · ha−1 for Eucalyptus globulus (age 20–24 years for P. radiata and 10–14 years for Eucalyptus). Total C stocks were for 343 Mg · ha−1 for P. radiata, 352 Mg · ha−1 for E. nitens, and 254 Mg · ha−1 for E. globulus, also at the end of a typical rotation. The carbon pool in the forest floor was found to be significantly lower (less than 4% of the total) when compared to the other pools and showed large spatial variability. Our results agree with other studies showing that 30–50% of the total C stock is stored in the soil. The baseline data will be valuable for modelling C storage changes under different management regimes (changes in species, rotation length and stocking) and for different future climates. Given the contribution of soils to total carbon stocks, special attention should be paid to forest management activities that affect the soil organic carbon pool.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3