A Model-Downscaling Method for Fine-Resolution LAI Estimation

Author:

Zhang Jingyu,Wang JindiORCID,Sun RuiORCID,Zhou HongminORCID,Zhang Helin

Abstract

The leaf area index (LAI) is a critical parameter for characterizing the structure and function of vegetation in ecosystems. Currently, operational LAI products always have coarse spatial resolution, and fine-resolution LAI maps are urgently needed for ecological environment assessment and the precise monitoring of cropland growth. LAI downscaling methods are efficient at improving the spatial resolution of LAI products but often ignore the scaling effect of the model. In this study, a novel model-downscaling method is proposed for fine-resolution LAI estimation. It uses scaling equations of model parameters (SEMPs) to describe the scaling relations of models at different spatial resolutions and construct a downscaled model from a coarse-resolution model. Landsat Normalized Difference Vegetation Index (NDVI) at 30 m and Global LAnd Surface Satellite (GLASS) LAI at 1 km spatial resolutions are used because they are readily available. The downscaled model is evaluated by a fine-resolution model directly constructed with fine-resolution data. The fine-resolution LAI values estimated by this model-downscaling method are evaluated with field LAI measurements. The validation results show that the proposed method can generate highly accurate LAIs, with an RMSE of 0.821 at the Pshenichne cropland site in Ukraine and an RMSE of 0.515 at the Camerons forest site in Australia when compared with field LAI measurements. The results are also better than those of Ovakoglou’s downscaling method. These results demonstrate that the model-downscaling method for fine-resolution LAI estimation is viable and referable for related studies.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3