Sensitivity of Multispectral Imager Liquid Water Cloud Microphysical Retrievals to the Index of Refraction

Author:

Platnick StevenORCID,Meyer KerryORCID,Amarasinghe Nandana,Wind GalinaORCID,Hubanks Paul A.,Holz Robert E.ORCID

Abstract

A cloud property retrieved from multispectral imagers having spectral channels in the shortwave infrared (SWIR) and/or midwave infrared (MWIR) is the cloud effective particle radius (CER), a radiatively relevant weighting of the cloud particle size distribution. The physical basis of the CER retrieval is the dependence of SWIR/MWIR cloud reflectance on the cloud particle single scattering albedo, which in turn depends on the complex index of refraction of bulk liquid water (or ice) in addition to the cloud particle size. There is a general consistency in the choice of the liquid water index of refraction by the cloud remote sensing community, largely due to the few available independent datasets and compilations. Here we examine the sensitivity of CER retrievals to the available laboratory index of refraction datasets in the SWIR and MWIR using the retrieval software package that produces NASA’s standard Moderate Resolution Imaging Spectroradiometer (MODIS)/Visible Infrared Imaging Radiometer suite (VIIRS) continuity cloud products. The sensitivity study incorporates two laboratory index of refraction datasets that include measurements at supercooled water temperatures, one in the SWIR and one in the MWIR. Neither has been broadly utilized in the cloud remote sensing community. It is shown that these two new datasets can significantly change CER retrievals (e.g., 1–2 µm) relative to common datasets used by the community. Further, index of refraction data for a 265 K water temperature gives more consistent retrievals between the two spectrally distinct 2.2 µm atmospheric window channels on MODIS and VIIRS. As a result, 265 K values from the SWIR and MWIR index of refraction datasets were adopted for use in the production version of the continuity cloud product. The results indicate the need to better understand temperature-dependent bulk water absorption and uncertainties in these spectral regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3