FGATR-Net: Automatic Network Architecture Design for Fine-Grained Aircraft Type Recognition in Remote Sensing Images

Author:

Liang Wei,Li Jihao,Diao Wenhui,Sun Xian,Fu Kun,Wu Yirong

Abstract

Fine-grained aircraft type recognition in remote sensing images, aiming to distinguish different types of the same parent category aircraft, is quite a significant task. In recent decades, with the development of deep learning, the solution scheme for this problem has shifted from handcrafted feature design to model architecture design. Although a great progress has been achieved, this paradigm generally needs strong expert knowledge and rich expert experience. It is still an extremely laborious work and the automation level is relatively low. In this paper, inspired by Neural Architecture Search (NAS), we explore a novel differentiable automatic architecture design framework for fine-grained aircraft type recognition in remote sensing images. In our framework, the search process is divided into several phases. Network architecture deepens at each phase while the number of candidate functions gradually decreases. To achieve it, we adopt different pruning strategies. Then, the network architecture is determined through a potentiality judgment after an architecture heating process. This approach can not only search deeper network, but also reduce the computational complexity, especially for relatively large size of remote sensing images. When all differentiable search phases are finished, the searched model called Fine-Grained Aircraft Type Recognition Net (FGATR-Net) is obtained. Compared with previous NAS, ours are more suitable for relatively large and complex remote sensing images. Experiments on Multitype Aircraft Remote Sensing Images (MTARSI) and Aircraft17 validate that FGATR-Net possesses a strong capability of feature extraction and feature representation. Besides, it is also compact enough, i.e., parameter quantity is relatively small. This powerfully indicates the feasibility and effectiveness of the proposed automatic network architecture design method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3