Abstract
The evaluation of remote sensing imagery segmentation results plays an important role in the further image analysis and decision-making. The search for the optimal segmentation method for a particular data set and the suitability of segmentation results for the use in satellite image classification are examples where the proper image segmentation quality assessment can affect the quality of the final result. There is no extensive research related to the assessment of the segmentation effectiveness of the images. The designed objective quality assessment metrics that can be used to assess the quality of the obtained segmentation results usually take into account the subjective features of the human visual system (HVS). A novel approach is used in the article to estimate the effectiveness of satellite image segmentation by relating and determining the correlation between subjective and objective segmentation quality metrics. Pearson’s and Spearman’s correlation was used for satellite images after applying a k-means++ clustering algorithm based on colour information. Simultaneously, the dataset of the satellite images with ground truth (GT) based on the “DeepGlobe Land Cover Classification Challenge” dataset was constructed for testing three classes of quality metrics for satellite image segmentation.
Subject
General Earth and Planetary Sciences
Reference60 articles.
1. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
2. Color Based Image Segmentation Using K-Means Clustering;Chitade;Int. J. Eng. Sci. Technol.,2010
3. Visible colour difference-based quantitative evaluation of colour segmentation
4. Novel Full-Reference Image Quality Index for Color Images;Gupta,2012
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献