Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural Network Trained Using AERONET Observations

Author:

She LuORCID,Zhang Hankui K.ORCID,Li ZhengqiangORCID,de Leeuw GerritORCID,Huang BoORCID

Abstract

Spectral aerosol optical depth (AOD) estimation from satellite-measured top of atmosphere (TOA) reflectances is challenging because of the complicated TOA-AOD relationship and a nexus of land surface and atmospheric state variations. This task is usually undertaken using a physical model to provide a first estimate of the TOA reflectances which are then optimized by comparison with the satellite data. Recently developed deep neural network (DNN) models provide a powerful tool to represent the complicated relationship statistically. This study presents a methodology based on DNN to estimate AOD using Himawari-8 Advanced Himawari Imager (AHI) TOA observations. A year (2017) of AHI TOA observations over the Himawari-8 full disk collocated in space and time with Aerosol Robotic Network (AERONET) AOD data were used to derive a total of 14,154 training and validation samples. The TOA reflectance in all six AHI solar bands, three TOA reflectance ratios derived based on the dark-target assumptions, sun-sensor geometry, and auxiliary data are used as predictors to estimate AOD at 500 nm. The DNN AOD is validated by separating training and validation samples using random k-fold cross-validation and using AERONET site-specific leave-one-station-out validation, and is compared with a random forest regression estimator and Japan Meteorological Agency (JMA) AOD. The DNN AOD shows high accuracy: (1) RMSE = 0.094, R2 = 0.915 for k-fold cross-validation, and (2) RMSE = 0.172, R2 = 0.730 for leave-one-station-out validation. The k-fold cross-validation overestimates the DNN accuracy as the training and validation samples may come from the same AHI pixel location. The leave-one-station-out validation reflects the accuracy for large-area applications where there are no training samples for the pixel location to be estimated. The DNN AOD has better accuracy than the random forest AOD and JMA AOD. In addition, the contribution of the dark-target derived TOA ratio predictors is examined and confirmed, and the sensitivity to the DNN structure is discussed.

Funder

Science and Technology Department of Ningxia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference78 articles.

1. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2014

2. Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades;Lee,2009

3. Satellite Aerosol Remote Sensing over Land;Kokhanovsky,2009

4. Merging regional and global aerosol optical depth records from major available satellite products

5. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3