The Potential of ICESat-2 to Identify Carbon-Rich Peatlands in Indonesia

Author:

Berninger Anna,Siegert Florian

Abstract

Peatlands in Indonesia are one of the primary global storages for terrestrial organic carbon. Poor land management, drainage, and recurrent fires lead to the release of huge amounts of carbon dioxide. Accurate information about the extent of the peatlands and its 3D surface topography is crucial for assessing and quantifying this globally relevant carbon store. To identify the most carbon-rich peatlands—dome-shaped ombrogenous peat—by collecting GPS-based terrain data is almost impossible, as these peatlands are often located in remote areas, frequently flooded, and usually covered by dense tropical forest vegetation. The detection by airborne LiDAR or spaceborne remote sensing in Indonesia is costly and laborious. This study investigated the potential of the ICESat-2/ATLAS LiDAR satellite data to identify and map carbon-rich peatlands. The spaceborne ICESat-2 LiDAR data were compared and correlated with highly accurate field validated digital terrain models (DTM) generated from airborne LiDAR as well as the commercial global WorldDEM DTM dataset. Compared to the airborne DTM, the ICESat-2 LiDAR data produced an R2 of 0.89 and an RMSE of 0.83 m. For the comparison with the WorldDEM DTM, the resulting R2 lay at 0.94 and the RMSE at 0.86 m. We model the peat dome surface from individual peat hydrological units by performing ordinary kriging on ICESat-2 DTM-footprint data. These ICESat-2 based peatland models, compared to a WorldDEM DTM and airborne DTM, produced an R2 of 0.78, 0.84, and 0.94 in Kalimantan and an R2 of 0.69, 0.72, and 0.85 in Sumatra. The RMSE ranged from 0.68 m to 2.68 m. These results demonstrate the potential of ICESat-2 in assessing peat surface topography. Since ICESat-2 will collect more data worldwide in the years to come, it can be used to survey and map carbon-rich tropical peatlands globally and free of charge.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3