An Artificial Neural Network to Infer the Mediterranean 3D Chlorophyll-a and Temperature Fields from Remote Sensing Observations

Author:

Sammartino Michela,Buongiorno Nardelli BrunoORCID,Marullo SalvatoreORCID,Santoleri RosaliaORCID

Abstract

Remote sensing data provide a huge number of sea surface observations, but cannot give direct information on deeper ocean layers, which can only be provided by sparse in situ data. The combination of measurements collected by satellite and in situ sensors represents one of the most effective strategies to improve our knowledge of the interior structure of the ocean ecosystems. In this work, we describe a Multi-Layer-Perceptron (MLP) network designed to reconstruct the 3D fields of ocean temperature and chlorophyll-a concentration, two variables of primary importance for many upper-ocean bio-physical processes. Artificial neural networks can efficiently model eventual non-linear relationships among input variables, and the choice of the predictors is thus crucial to build an accurate model. Here, concurrent temperature and chlorophyll-a in situ profiles and several different combinations of satellite-derived surface predictors are used to identify the optimal model configuration, focusing on the Mediterranean Sea. The lowest errors are obtained when taking in input surface chlorophyll-a, temperature, and altimeter-derived absolute dynamic topography and surface geostrophic velocity components. Network training and test validations give comparable results, significantly improving with respect to Mediterranean climatological data (MEDATLAS). 3D fields are then also reconstructed from full basin 2D satellite monthly climatologies (1998–2015) and resulting 3D seasonal patterns are analyzed. The method accurately infers the vertical shape of temperature and chlorophyll-a profiles and their spatial and temporal variability. It thus represents an effective tool to overcome the in-situ data sparseness and the limits of satellite observations, also potentially suitable for the initialization and validation of bio-geophysical models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3