Author:
Seydehmet Jumeniyaz,Lv Guang-Hui,Abliz Abdugheni,Shi Qing-Dong,Abliz Abdulla,Turup Abdusalam
Abstract
Irrigation salinity is a common environmental threat for sustainable development in the Keriya Oasis, arid Northwest China. It is mainly caused by unreasonable land management and excessive irrigation. The aim of this study was to assess and map the salinity risk distribution by developing a composite risk index (CRI) for seventeen risk parameters from traditional and scientific fields, based on maximizing deviation method and analytic hierarchy process, the grey relational analysis and the Pressure-State-Response (PSR) sustainability framework. The results demonstrated that the northern part of the Shewol and Yeghebagh village has a very high salinity risk, which might be caused by flat and low terrain, high subsoil total soluble salt, high groundwater salinity and shallow groundwater depth. In contrast, the southern part of the Oasis has a low risk of salinity because of high elevation, proper drainage conditions and a suitable groundwater table. This achievement has shown that southern parts of the Oasis are suitable for irrigation agriculture; for the northern area, there is no economically feasible solution but other areas at higher risk can be restored by artificial measures. Therefore, this study provides policy makers with baseline data for restoring the soil salinity within the Oasis.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献