Genetic Hybrid Optimization of a Real Bike Sharing System

Author:

Aranda-Corral Gonzalo A.ORCID,Rodríguez Miguel A.ORCID,Fernández de Viana IñakiORCID,Arenas María Isabel G.ORCID

Abstract

In recent years there has been a growing interest in resource sharing systems as one of the possible ways to support sustainability. The use of resource pools, where people can drop a resource to be used by others in a local context, is highly dependent on the distribution of those resources on a map or graph. The optimization of these systems is an NP-Hard problem given its combinatorial nature and the inherent computational load required to simulate the use of a system. Furthermore, it is difficult to determine system overhead or unused resources without building the real system and test it in real conditions. Nevertheless, algorithms based on a candidate solution allow measuring hypothetical situations without the inconvenience of a physical implementation. In particular, this work focuses on obtaining the past usage of bike loan network infrastructures to optimize the station’s capacity distribution. Bike sharing systems are a good model for resource sharing systems since they contain common characteristics, such as capacity, distance, and temporary restrictions, which are present in most geographically distributed resources systems. To achieve this target, we propose a new approach based on evolutionary algorithms whose evaluation function will consider the cost of non-used bike places as well as the additional kilometers users would have to travel in the new distribution. To estimate its value, we will consider the geographical proximity and the trend in the areas to infer the behavior of users. This approach, which improves user satisfaction considering the past usage of the former infrastructure, as far as we know, has not been applied to this type of problem and can be generalized to other resource sharing problems with usage data.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Bikeshare: A Review of Recent Literature

2. A simulation model for public bike-sharing systems

3. Environmental benefits of bike sharing: A big data-based analysis;Mi;Appl. Energy,2018

4. The Problem Isn’t Dockless Share Bikes. It’s the Lack of Bike Parking https://theconversation.com/

5. The role of smart bike-sharing systems in urban mobility;Midgley;Journeys,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling Knowledge Extraction on Bike Sharing Systems Throughout Open Data;HCI in Mobility, Transport, and Automotive Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3