Abstract
Intelligent manufacturing is the trend of the steel industry. A cyber-physical system oriented steel production scheduling system framework is proposed. To make up for the difficulty of dynamic scheduling of steel production in a complex environment and provide an idea for developing steel production to intelligent manufacturing. The dynamic steel production scheduling model characteristics are studied, and an ontology-based steel cyber-physical system production scheduling knowledge model and its ontology attribute knowledge representation method are proposed. For the dynamic scheduling, the heuristic scheduling rules were established. With the method, a hyper-heuristic algorithm based on genetic programming is presented. The learning-based high-level selection strategy method was adopted to manage the low-level heuristic. An automatic scheduling rule generation framework based on genetic programming is designed to manage and generate excellent heuristic rules and solve scheduling problems based on different production disturbances. Finally, the performance of the algorithm is verified by a simulation case.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献