Abstract
Rough set philosophy is a significant methodology in the knowledge discovery of databases. In the present paper, we suggest new sorts of rough set approximations using a multi-knowledge base; that is, a family of the finite number of general binary relations via different methods. The proposed methods depend basically on a new neighborhood (called basic-neighborhood). Generalized rough approximations (so-called, basic-approximations) represent a generalization to Pawlak’s rough sets and some of their extensions as confirming in the present paper. We prove that the accuracy of the suggested approximations is the best. Many comparisons between these approaches and the previous methods are introduced. The main goal of the suggested techniques was to study the multi-information systems in order to extend the application field of rough set models. Thus, two important real-life applications are discussed to illustrate the importance of these methods. We applied the introduced approximations in a set-valued ordered information system in order to be accurate tools for decision-making. To illustrate our methods, we applied them to find the key foods that are healthy in nutrition modeling, as well as in the medical field to make a good decision regarding the heart attacks problem.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference38 articles.
1. Rough sets
2. Rough Sets
3. On j-near concepts in rough sets with some applications
4. Rough set theory for topological spaces
5. On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces;Abd El-Monsef;Int. J. Granul. Comput. Rough Sets Intell. Syst.,2014
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献