Abstract
Welding operations may be subjected to different types of defects when the process is not properly controlled and most defect detection is done a posteriori. The mechanical variables that are at the origin of these imperfections are often not observable in situ. We propose an offline/online data assimilation approach that allows for joint parameter and state estimations based on local probabilistic surrogate models and thermal imaging in real-time. Offline, the surrogate models are built from a high-fidelity thermomechanical Finite Element parametric study of the weld. The online estimations are obtained by conditioning the local models by the observed temperature and known operational parameters, thus fusing high-fidelity simulation data and experimental measurements.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献