Abstract
Linear complexity is an important property to measure the unpredictability of pseudo-random sequences. Trace representation is helpful for analyzing cryptography properties of pseudo-random sequences. In this paper, a class of new Ding generalized cyclotomic binary sequences of order two with period pq is constructed based on the new segmentation of Ding Helleseth generalized cyclotomy. Firstly, the linear complexity and minimal polynomial of the sequences are investigated. Then, their trace representation is given. It is proved that the sequences have larger linear complexity and can resist the attack of the Berlekamp–Massey algorithm. This paper also confirms that generalized cyclotomic sequences with good randomness may be obtained by modifying the characteristic set of generalized cyclotomy.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Hebei Province
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)