Abstract
It is a natural question if a Cartesian product of objects produces an object of the same type. For example, it is well known that a countable Cartesian product of metrizable topological spaces is metrizable. Related to this question, Borsík and Doboš characterized those functions that allow obtaining a metric in the Cartesian product of metric spaces by means of the aggregation of the metrics of each factor space. This question was also studied for norms by Herburt and Moszyńska. This aggregation procedure can be modified in order to construct a metric or a norm on a certain set by means of a family of metrics or norms, respectively. In this paper, we characterize the functions that allow merging an arbitrary collection of (asymmetric) norms defined over a vector space into a single norm (aggregation on sets). We see that these functions are different from those that allow the construction of a norm in a Cartesian product (aggregation on products). Moreover, we study a related topological problem that was considered in the context of metric spaces by Borsík and Doboš. Concretely, we analyze under which conditions the aggregated norm is compatible with the product topology or the supremum topology in each case.
Funder
Ministerio de Ciencia, Innovación y Universidades
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference26 articles.
1. Aggregation Functions: A Guide for Practitioners;Beliakov,2007
2. Aggregation functions;Grabisch,2009
3. Modeling Decisions: Information Fusion and Aggregation Operators;Torra,2007
4. Construction of image reduction operators using averaging aggregation functions
5. The dual decomposition of aggregation functions and its application in welfare economics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献