Abstract
In this paper, we use soft linear operators to introduce the notion of discrete frames on soft Hilbert spaces, which extends the classical notion of frames on Hilbert spaces to the context of algebraic structures on soft sets. Among other results, we show that the frame operator associated to a soft discrete frame is bounded, self-adjoint, invertible and with a bounded inverse. Furthermore, we prove that every element in a soft Hilbert space satisfies the frame decomposition theorem. This theoretical framework is potentially applicable in signal processing because the frame coefficients serve to model the data packets to be transmitted in communication networks.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献