Abstract
The aim of this work is to characterize Traveling Waves (TW) solutions for a coupled system with KPP-Fisher nonlinearity and weak advection. The heterogeneous diffusion introduces certain instabilities in the TW heteroclinic connections that are explored. In addition, a weak advection reflects the existence of a critical combined TW speed for which solutions are purely monotone. This study follows purely analytical techniques together with numerical exercises used to validate or extent the contents of the analytical principles. The main concepts treated are related to positivity conditions, TW propagation speed and homotopy representations to characterize the TW asymptotic behaviour.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献