Comparison of Different Important Predictors and Models for Estimating Large-Scale Biomass of Rubber Plantations in Hainan Island, China

Author:

Li Xin1,Wang Xincheng12,Gao Yuanfeng12,Wu Jiuhao1,Cheng Renxi1,Ren Donghao1,Bao Qing1,Yun Ting1ORCID,Wu Zhixiang2ORCID,Xie Guishui2,Chen Bangqian2ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Rubber Research Institute (RRI), Chinese Academy of Tropical Agricultural Sciences (CATAS), Hainan Danzhou Agro-Ecosystem National Observation and Research Station, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Haikou 571101, China

Abstract

Rubber (Hevea brasiliensis Muell.) plantations are among the most critical agricultural ecosystems in tropical regions, playing a vital role in regional carbon balance. Accurate large-scale biomass estimation for these plantations remains a challenging task due to the severe signal saturation problem. Recent advances in remote sensing big data, cloud platforms, and machine learning have facilitated the precise acquisition of key physiological variables, such as stand age (A) and canopy height (H), which are critical parameters for biomass estimation but have been underutilized in prior studies. Using Hainan Island—the second-largest rubber planting base in China—as a case study, we integrated extensive ground surveys, maps of stand age and canopy height, remote sensing indicators (RSIs), and geographical and climate indicators (ECIs) to ascertain the optimal method for estimating rubber plantation biomass. We compared different inputs and estimation approaches (direct and indirect) using the random forest algorithm and analyzed the spatiotemporal characteristics of rubber plantation biomass on Hainan Island. The results indicated that the traditional model (RSIs + ECIs) had low accuracy and significant estimation bias (R2 = 0.24, RMSE = 38.36 mg/ha). The addition of either stand age or canopy height considerably enhance model accuracy (R2 = 0.77, RMSE ≈ 21.12 mg/ha). Moreover, incorporating the DBH obtained through indirect inversion yielded even greater predictive accuracy (R2 = 0.97, RMSE = 7.73 mg/ha), outperforming estimates derived from an allometric equation model input with the DBH (R2 = 0.67, RMSE = 25.43 mg/ha). However, augmenting the model with stand age, canopy height, or their combination based on RSIs, ECIs, and DBH only marginally improved the accuracy. Consequently, it is not recommended in scenarios with limited data and computing resources. Employing the optimal model, we generated biomass maps of rubber plantations on Hainan Island for 2016 and 2020, revealing that the spatiotemporal distribution pattern of the biomass is closely associated with the establishment year of the rubber plantations. While average biomass in a few areas has undergone slight decreases, total biomass has exhibited significant growth, reaching 5.46 × 107 mg by the end of 2020, underscoring its considerable value as a carbon sink.

Funder

Hainan Province Science and Technology Special Found

Natural Science Foundation

National Natural Science Foundation of China

Earmarked Fund for China Agriculture Research System

Innovation and Entrepreneurship Training Project for Undergraduates in Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3