TSVR-Net: An End-to-End Ground-Penetrating Radar Images Registration and Location Network

Author:

Bi Beizhen1ORCID,Shen Liang2,Zhang Pengyu1,Huang Xiaotao1,Xin Qin1,Jin Tian1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

2. Test Center, National University of Defense Technology, Xi’an 710106, China

Abstract

Stable and reliable autonomous localization technology is fundamental for realizing autonomous driving. Localization systems based on global positioning system (GPS), cameras, LIDAR, etc., can be affected by building occlusion or drastic changes in the environment. These effects can degrade the localization accuracy and even cause the problem of localization failure. Localizing ground-penetrating radar (LGPR) as a new type of localization can rely only on robust subsurface information for autonomous localization. LGPR is mostly a 2D-2D registration process. This paper describes the LGPR as a slice-to-volume registration (SVR) problem and proposes an end-to-end TSVR-Net-based regression localization method. Firstly, the information of different dimensions in 3D data is used to ensure the high discriminative power of the data. Then the attention module is added to the design to make the network pay attention to important information and high discriminative regions while balancing the information weights of different dimensions. Eventually, it can directly regress to predict the current data location on the map. We designed several sets of experiments to verify the method’s effectiveness by a step-by-step analysis. The superiority of the proposed method over the current state-of-the-art LGPR method is also verified on five datasets. The experimental results show that both the deep learning method and the increase in dimensional information can improve the stability of the localization system. The proposed method exhibits excellent localization accuracy and better stability, providing a new concept to realize the stable and reliable real-time localization of ground-penetrating radar images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Looking Beneath More: A Sequence-based Localizing Ground Penetrating Radar Framework;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3