Forecasting Regional Ionospheric TEC Maps over China Using BiConvGRU Deep Learning

Author:

Tang Jun12ORCID,Zhong Zhengyu2,Hu Jiacheng1,Wu Xuequn1

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

In this paper, we forecasted the ionospheric total electron content (TEC) over the region of China using the bidirectional convolutional gated recurrent unit (BiConvGRU) model. We first generated the China Regional Ionospheric Maps (CRIMs) using GNSS observations provide by the Crustal Movement Observation Network of China (CMONOC). We then used gridded TEC maps from 2015 to 2018 with a 1 h interval from the CRIMs as the dataset, including quiet periods and storm periods of ionospheric TEC. The BiConvGRU model was then utilized to forecast the ionospheric TEC across China for the year 2018. The forecasted TEC was compared with the TEC from the International Reference Ionosphere (IRI-2016), Convolutional Long Short-Term Memory (ConvLSTM), Convolutional Gated Recurrent Unit (ConvGRU), Bidirectional Convolutional Long Short-Term Memory (BiConvLSTM), and the 1-day Predicted Global Ionospheric Map (C1PG) provided by the Center for Orbit Determination in Europe (CODE). In addition, indices including Kp, ap, Dst and F10.7 were added to the training dataset to improve the forecasting accuracy of the model (-A indicates no indices, while -B indicates with indices). The results verified that the prediction accuracies of the models integrated with these indices were significantly improved, especially during geomagnetic storms. The BiConvGRU-B model presented a decrease of 41.5%, 22.3%, and 13.2% in the root mean square error (RMSE) compared to the IRI-2016, ConvGRU, and BiConvLSTM-B models during geomagnetic storm days. Furthermore, at a specific grid point, the BiConvGRU-B model showed a decrease of 42.6%, 49.1%, and 31.9% in RMSE during geomagnetic quiet days and 30.6%, 34.1%, and 15.1% during geomagnetic storm days compared to the IRI-2016, C1PG, and BiConvLSTM-B models, respectively. In the cumulative percentage analysis, the BiConvGRU-B model had a significantly higher percentage of mean absolute error (MAE) within the range of 0–1 TECU in all seasons compared to the BiConvLSTM-B model. Meanwhile, the BiConvGRU-B model outperformed the BiConvLSTM-B model with lower RMSE for each month of 2018.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3