Vision-Aided Hyperspectral Full-Waveform LiDAR System to Improve Detection Efficiency

Author:

Wu Hao12ORCID,Lin Chao1,Li Chengliang1,Zhang Jialun1,Gaoqu Youyang12,Wang Shuo12,Wang Long1,Xue Hao1,Sun Wenqiang3,Zheng Yuquan1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Goertek Optical Technology Co., Ltd., Wei Fang 370700, China

Abstract

The hyperspectral full-waveform LiDAR (HSL) system based on the supercontinuum laser can obtain spatial and spectral information of the target synchronously and outperform traditional LiDAR or imaging spectrometers in target classification and other applications. However, low detection efficiency caused by the detection of useless background points (ULBG) hinders its practical applications, especially when the target is small compared with the large field of view (FOV) of the HSL system. A novel vision-aided hyperspectral full-waveform LiDAR system (V-HSL) was proposed to solve the problem and improve detection efficiency. First, we established the framework and developed preliminary algorithms for the V-HSL system. Next, we experimentally compared the performance of the V-HSL system with the HSL system. The results revealed that the proposed V-HSL system could reduce the detection of ULBG points and improve detection efficiency with enhanced detection performance. The V-HSL system is a promising development direction, and the study results will help researchers and engineers develop and optimize their design of the HSL system and ensure high detection efficiency of spatial and spectral information of the target.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3