Marine Environmental Impact on CFAR Ship Detection as Measured by Wave Age in SAR Images

Author:

Bezerra Diego X.1ORCID,Lorenzzetti João A.1ORCID,Paes Rafael L.2

Affiliation:

1. National Institute for Space Research, São José dos Campos 12201-970, SP, Brazil

2. Brazilian Air Force General Staff, Brasília 70045-900, DF, Brazil

Abstract

Satellite synthetic aperture radar (SAR) images are recognized as one of the most efficient tools for day/night, all weather and large area monitoring of ships at sea. However, false alarms discrimination is still one key problem on SAR ship detection. While many discrimination techniques have been proposed for the treatment of false alarms, not enough emphasis has been targeted to explore how obtained false alarms are related to the changing ocean environmental conditions. To this end, we combined a large set of Sentinel-1 SAR images with ocean surface wind and wave data into one dataset. SAR images were separated into three distinct groups according to wave age (WA) conditions present during image acquisition: young wind sea, old wind sea, and swell. A constant false alarm rate (CFAR) ship detection algorithm was implemented based on the generalized gamma distribution (GΓD). Kolmogorov–Smirnov distance was used to analyze the distribution goodness-of-fit among distinct ocean environments. A backscattering analysis of different sizes of ship targets and sea clutter was further performed using the OpenSARShip and automatic identification system (AIS) datasets to assess its separability. We derived a discrimination threshold adjustment based on WA conditions and showed its efficacy to drastically reduce false alarms. To our present knowledge, the use of WA as part of the CFAR and for the adjustment of the threshold of detection is a novelty which could be tested and evaluated for different SAR sensors.

Funder

National Council for Scientific and Technological Development—CNPq

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3