Bioelectrochemical Remediation for the Removal of Petroleum Hydrocarbon Contaminants in Soil

Author:

Noori Md Tabish,Thatikayala Dayakar,Min Booki

Abstract

Consistent accumulation of petroleum hydrocarbon (PH) in soil and sediments is a big concern and, thus, warrants a static technology to continuously remediate PH-contaminated soil. Bioelectrochemical systems (BESs) can offer the desired solution using the inimitable metabolic response of electroactive microbes without involving a physiochemical process. To date, a wide range of BES-based applications for PH bioremediations under different environmental conditions is readily available in the literature. Here, the latest development trend in BESs for PH bioremediation is critically analyzed and discussed. The reactor design and operational factors that affect the performance of BESs and their strategic manipulations such as designing novel reactors to improve anodic reactions, enhancing soil physiology (electrical conductivity, mass diffusion, hydraulic conductivity), electrode modifications, operational conditions, microbial communities, etc., are elaborated to fortify the understanding of this technology for future research. Most of the literature noticed that a low mass diffusion condition in soil restricts the microbes from interacting with the contaminant farther to the electrodes. Therefore, more research efforts are warranted, mainly to optimize soil parameters by specific amendments, electrode modifications, optimizing experimental parameters, integrating different technologies, and conducting life cycle and life cycle cost analysis to make this technology viable for field-scale applications.

Funder

Kyung Hee University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3