A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies

Author:

Motuzienė Violeta,Čiuprinskas Kęstutis,Rogoža Artur,Lapinskienė Vilūnė

Abstract

Technologies that use renewable energy sources (RES) are crucial to achieving decarbonization goals, but a significant number of studies show their relatively high environmental impact during the production phase. Therefore, technologies need to be compared in terms of their life-cycle environmental impact. The life cycle analysis (LCA) methodology is well known and widely employed. However, problems related to the methodological choices prevent taking full advantage of the LCA, as the results of numerous studies are often incomparable. The presented review aims to critically compare the impact of different energy generation technologies—RES (as well as non-RES) energy generators and co-generators. The numeric results are structured and analyzed in terms of the global warming potential (GWP) and non-RES primary energy consumption. The results show that RES technologies are superior compared to conventional fossil-fuel-based systems in most cases, and the high impact during the production and installation phases is compensated in the operational phase. The high variations in GWP from similar technologies result from different methodological choices, but they also show that the wrong choice of the technology in a certain location might cause serious environmental drawbacks when the impact of the RES technology exceeds the impact of fossil fuel-based technologies. Cogeneration technologies using waste as a fuel may even have a negative GWP impact, thus showing even higher potential for decarbonization than RES technologies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference120 articles.

1. Environmental impacts of solar energy systems: A review;Sci. Total Environ.,2021

2. IRENA (2021, December 15). Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org/publications.

3. Challenges in the decarbonization of the energy sector;Energy,2020

4. IRENA (2021, December 10). World Energy Transitions Outlook 1.5 °C Pathway. Available online: https://www.irena.org/publications.

5. (2006). Environmental Management-Life Cycle Assessment-Principles and Framework (Standard No. ISO 14040).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3