Sub Synchronous Oscillations under High Penetration of Renewables—A Review of Existing Monitoring and Damping Methods, Challenges, and Research Prospects

Author:

Perera UviniORCID,Oo Amanullah Maung Than,Zamora RamonORCID

Abstract

With the recent developments in renewable energy generation and addition of power electronic devices, power system dynamics have become extremely complex. One of the challenges faced due to this transition is the sub synchronous oscillations caused by the interaction of renewable energy sources and various components of the power grid. Recently reported incidents due to sub synchronous oscillations highlight the need of monitoring and suppression of these harmful oscillations in real time. This paper gives an overview of the phenomena of sub synchronous oscillations and discusses the existing monitoring and damping techniques along with their limitations. Further, it highlights the research trends along this path.

Funder

Auckland University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference110 articles.

1. World Energy Transitions Outlook: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. 2022.

2. Review and Outlook on the International Renewable Energy Development;Li;Energy Built Environ.,2020

3. Overview of wind power generation in China: Status and development;Feng;Renew. Sustain. Energy Rev.,2015

4. Recent technology and challenges of wind energy generation: A review;Roga;Sustain. Energy Technol. Assess.,2022

5. SSR Mitigation With a New Control of PV Solar Farm as STATCOM (PV-STATCOM);Varma;IEEE Trans. Sustain. Energy,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3