Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco

Author:

Ait Lahoussine Ouali HananeORCID,Alami Merrouni Ahmed,Chowdhury ShahariarORCID,Techato KuaananORCID,Channumsin SittipornORCID,Ullah NasimORCID

Abstract

Morocco is a country with a lack of fossil fuel resources and an increasing demand for energy. This inspired the country to increase the use of renewable energy in the energy mix. The objective of this study was to conduct an optimization and techno-economic appraisal of a concentrated solar power plant (CSP) using different scenarios that took Ouarzazate city in the south of Morocco as a case study. To achieve this, several parameters were assessed, including the impacts of solar collector assemblies (SCAs), receiver types, heat transfer fluids, cooling systems, solar multiples, and thermal storage hours, with regard to the profitability of the CSP plant. Then, performance and sensitivity analyses were conducted to select the best integration scenarios based on different economic indicators, including levelized cost of electricity (LCOE) and net present value (NPV). The findings revealed that the use of the Luz LS-3 as the collector/SCA, Solel UVAC 3 as receiver, and Dowtherm Q as heat transfer fluid exhibited the highest performance in terms of the annual energy production yield and capacity factor, as well as the lowest real and nominal LCOEs with a wet cooled condenser. Furthermore, the LCOE is extremely sensitive to changes in the number of hours of storage and the solar multiple, and the optimal real and nominal LCOEs are determined by a highly specific combination of the solar multiple and the number of hours of storage. As a consequence, the maximum and minimum net electricity outputs for the best configuration of the Parabolic Trough Collector (PTC) plant were 24.6 GWh and 7.4 GWh in May and December, respectively. Likewise, the capacity factor and the gross-to-net conversion factor for the optimized plant were found to be 47.9%, and 93.5%, respectively. Concerning the economic study, the expected energy cost was 0.1303 USD per kWh and the NPV value for Ouarzazate city was positive (more than USD 20 million), which indicates that the studied PTC plant was estimated to be financially and economically feasible. The results of this analysis are highly significant and may persuade decision makers, financiers, and solar energy industry players to increase their investments in the Kingdom of Morocco.

Funder

Prince of Songkla University

Geo-Informatics and Space Technology Development Agency

Taif University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3