Abstract
In the manuscript, a probability distribution of the queue length is studied in a model with group Markov arrivals, arbitrarily distributed service times and finite waiting room. After the period of suspension of service due to lack of packets, each new busy period is preceded by a random setup time. Integral equations for time-dependent queue-length distribution are derived by identifying renewal moments in the operation of the system and by applying total probability law. The representation for the solution of the system is found in terms of Laplace transforms. Computational examples illustrating the impact of system parameters on the queue-length distribution are included.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献