Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air

Author:

Zhai Yu,Zhao Xu,Dong Zhifeng

Abstract

The mine return air flow has the characteristics of basically constant temperature and humidity all year round and is a high-quality waste heat resource. Its direct discharge not only wastes energy but also causes environment pollution. It has important economic value and application prospect to solve the problem of shaft antifreeze using new technology to recover the waste heat of mine return air. Gravity heat pipe is widely used in the heat recovery of mine return air. Its heat transfer process is a complex process with multiple parameters. The current research focuses on the influence of a single factor on heat transfer, which has many limitations. To analyze the effects of different parameters on the heat recovery effect of gravity heat pipe in mine return air and to optimize heat pipe heat exchanger parameters in the heat exchange system, mathematical models of gas–water countercurrent heat and mass transfer, entransy dissipation and exergy efficiency were established in this paper, based on the entransy dissipation theory. Under the condition of the given initial parameters, the effects of different parameters on the dimensionless factor, β, of heat transfer, total heat transfer, and entransy dissipation thermal resistance were analyzed. The experimental and calculation results show the entransy dissipation theory can be used to evaluate the heat transfer performance of the gravity heat pipe. When the entransy dissipation thermal resistance was minimum, the heat transfer performance was optimal. During the heat transfer process between the mine return air and the gravity heat pipe with high humidity under a given working condition, increasing the Reynolds number was beneficial to increase the heat transfer dimensionless factor, β.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Comparative analysis of renewable energy in mine and the selection of mine heating sources;Coal Eng.,2019

2. Parameters Optimization and Theoretical Model of Heat-Mass Transfer in a Spray Heat Exchanger Attaching to a Main Fan Diffuser;J. China Coal Soc.,2014

3. Analysis of the performance of direct contact heat exchange systems for application in mine waste heat recovery;Int. J. Energy Res.,2022

4. Design optimization of ethylene glycol interwall heat exchange wellhead antifreeze system in Yindonggou Coal Mine;Saf. Coal Mines,2022

5. Research on application of recovering low temperature residual heat from mine air based on heat pipe heat transfer technology;Coal Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3