Author:
Zhai Yu,Zhao Xu,Dong Zhifeng
Abstract
The mine return air flow has the characteristics of basically constant temperature and humidity all year round and is a high-quality waste heat resource. Its direct discharge not only wastes energy but also causes environment pollution. It has important economic value and application prospect to solve the problem of shaft antifreeze using new technology to recover the waste heat of mine return air. Gravity heat pipe is widely used in the heat recovery of mine return air. Its heat transfer process is a complex process with multiple parameters. The current research focuses on the influence of a single factor on heat transfer, which has many limitations. To analyze the effects of different parameters on the heat recovery effect of gravity heat pipe in mine return air and to optimize heat pipe heat exchanger parameters in the heat exchange system, mathematical models of gas–water countercurrent heat and mass transfer, entransy dissipation and exergy efficiency were established in this paper, based on the entransy dissipation theory. Under the condition of the given initial parameters, the effects of different parameters on the dimensionless factor, β, of heat transfer, total heat transfer, and entransy dissipation thermal resistance were analyzed. The experimental and calculation results show the entransy dissipation theory can be used to evaluate the heat transfer performance of the gravity heat pipe. When the entransy dissipation thermal resistance was minimum, the heat transfer performance was optimal. During the heat transfer process between the mine return air and the gravity heat pipe with high humidity under a given working condition, increasing the Reynolds number was beneficial to increase the heat transfer dimensionless factor, β.
Funder
the Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference33 articles.
1. Comparative analysis of renewable energy in mine and the selection of mine heating sources;Coal Eng.,2019
2. Parameters Optimization and Theoretical Model of Heat-Mass Transfer in a Spray Heat Exchanger Attaching to a Main Fan Diffuser;J. China Coal Soc.,2014
3. Analysis of the performance of direct contact heat exchange systems for application in mine waste heat recovery;Int. J. Energy Res.,2022
4. Design optimization of ethylene glycol interwall heat exchange wellhead antifreeze system in Yindonggou Coal Mine;Saf. Coal Mines,2022
5. Research on application of recovering low temperature residual heat from mine air based on heat pipe heat transfer technology;Coal Technol.,2019
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献