Trim and Engine Power Joint Optimization of a Ship Based on Minimum Energy Consumption over a Whole Voyage

Author:

Yu Yanyun1,Zhang Hongshuo1ORCID,Mu Zongbao2,Li Yating1,Sun Yutong1,Liu Jia2

Affiliation:

1. Ship CAD Engineering Center, Dalian University of Technology, Dalian 116023, China

2. Design and Research Institute, Dalian Shipbuilding Industry Co., Ltd., Dalian 116083, China

Abstract

Trim optimization is an available approach for the energy saving and emission reduction of a ship. As a ship sails on the water, the draft and trim undergo constant changes due to the consumption of fuel oil and other consumables. As a result, the selection of the initial trim is important if ballasting or shifting liquid among the tanks is not considered during a voyage. According to the characteristics of ship navigation and maneuvering, a practical trim optimization method is proposed to identify the Optimal Trim over a Whole Voyage (OTWV) which makes the fuel consumption of the voyage minimum. The calculations of speed vs. draft and trim surfaces are created according to hull resistance data generated by CFD, model tests, or real ship measurements, and these surfaces are used to calculate the OTWV. Ultimately, a trim and Main Engine (ME) power joint optimization method is developed based on the OTWV to make the total fuel consumption minimum for a voyage with a fixed length and travel time. A 307000 DWT VLCC is taken as an example to validate the practicality and effect of the two proposed optimization methods. The trim optimization example indicates that the OTWV could save up to 1.2% of the total fuel consumption compared to the Optimal Trim at Initial Draft (OTID). The trim and ME power joint optimization results show that the proposed method could steadily find the optimal trim and ME power combination, and the OTWV could save up to 1.0% fuel consumption compared to the OTID in this case.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3