Point-to-Point-Based Optimization Method of Ballast Water Allocation for Revolving Floating Cranes with Experimental Verification

Author:

Wang Xiaobang12ORCID,Yu Yang12,Li Siyu12,Zhang Jie34ORCID,Liu Zhijie12

Affiliation:

1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

2. Key Laboratory for Polar Safety Assurance Technology and Equipment of Liaoning Province, Dalian 116026, China

3. Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

4. Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

The Revolving Floating Crane (RFC) is a specialized engineering vessel crucial for offshore lifting operations, such as offshore platform construction and deep-water salvaging. It boasts impressive lifting capacity, good adaptability to various environmental conditions, and high operational efficiency. Conventionally, the safety and stability of RFC operations heavily depend on manual ballast water allocation, which is directly influenced by factors such as personnel status and sea conditions. These manual operations often result in reduced lifting efficiency, higher energy consumption, and compromised operational safety. In response, this paper introduces a ballast water-allocation approach based on the Point-to-Point (PTP) theory for the intelligent operation process of the RFC. The fundamental principles of the PTP theory are analyzed, and a method tailored to optimize ballast water allocation for RFC is proposed. Considering the unique characteristics of the ballast system and the specific requirements of lifting operations, an optimization model for PTP-based ballast water allocation is established. Numerical experiments are conducted to verify the efficacy and reliability of the proposed method. Comparing it to the conventional approaches, the results demonstrate a notable 17.75% reduction in energy consumption and an impressive 73.49% decrease in decision-making time, showcasing the superiority of the proposed approach. Finally, the engineering feasibility of the PTP-based optimization method for ballast water allocation is validated through actual lifting experiments, underscoring its potential to enhance RFC operations.

Funder

National Natural Science Foundation of China

Doctoral Start-up Foundation of Liaoning Province

Dalian Science and Technology Innovation Fund Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3