Statistical Analysis of Ice Load on Icebreaker Ship Based on Stochastic Ice Fields

Author:

Li Liang12ORCID,Han Guangchun2,Ji Shunying3

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Abstract

Accurately assessing ice loads is a fundamental issue in the field of structural design for ships in ice-covered regions. In this paper, we conducted research on extreme ice load estimation for icebreaking ships, combining stochastic theory with numerical simulation. Firstly, using sea ice data from the Arctic region of the United States National Snow and Ice Data Center, a stochastic ice field model was established under Arctic sea ice conditions using non-parametric estimation and the rejection sampling method, and ice field data were generated stochastically. Then, based on the stochastic ice field data, a three-dimensional numerical model of the interaction between the ice field and the ship hull was established, and the reliability of the numerical model was verified by experimental results. Finally, based on the numerical model of the interaction between the ice field and the ship hull, asymptotic methods were used to study the extreme ice load estimation in different parts of the ship hull, revealing the variation law of the extreme ice load in different parts of the ship hull. This study provides basic theory and technical support for the structural design of ships in polar regions and has engineering application value.

Funder

National Natural Science Foundation of China

State Key Laboratory of Structural Analysis for Industrial Equipment in Dalian University of Technology

Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3