Sample Augmentation Method for Side-Scan Sonar Underwater Target Images Based on CBL-sinGAN

Author:

Peng Chengyang1,Jin Shaohua1,Bian Gang1,Cui Yang1,Wang Meina1

Affiliation:

1. Department of Oceanography and Hydrography, Dalian Naval Academy, Dalian 116018, China

Abstract

The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification methods for Side-scan sonar images, and the amplification image quality is not ideal, which is not suitable for the characteristics of Side-scan sonar images. Addressing the current shortage of sample augmentation methods for Side-scan sonar, this paper proposes a method for augmenting single underwater target images using the CBL-sinGAN network. Firstly, considering the low resolution and monochromatic nature of Side-scan sonar images while balancing training efficiency and image diversity, a sinGAN network is introduced and designed as an eight-layer pyramid structure. Secondly, the Convolutional Block Attention Module (CBAM) is integrated into the network generator to enhance target learning in images while reducing information diffusion. Finally, an L1 loss function is introduced in the network discriminator to ensure training stability and improve the realism of generated images. Experimental results show that the accuracy of shipwreck target detection increased by 4.9% after training with the Side-scan sonar sample dataset augmented by the proposed network. This method effectively retains the style of the images while achieving diversity augmentation of small-sample underwater target images, providing a new approach to improving the construction of underwater target detection models.

Publisher

MDPI AG

Reference47 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3