A Novel Vision-Based Outline Extraction Method for Hull Components in Shipbuilding

Author:

Yu Hang12,Zhao Yixi1,Ni Chongben34ORCID,Ding Jinhong34,Zhang Tao4,Zhang Ran4,Jiang Xintian4

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shipbuilding Technology Research Institute, Shanghai 200032, China

3. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

4. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

The diverse nature of hull components in shipbuilding has created a demand for intelligent robots capable of performing various tasks without pre-teaching or template-based programming. Visual perception of a target’s outline is crucial for path planning in robotic edge grinding and other processes. Providing the target’s outline from point cloud or image data is essential for autonomous programming, requiring a high-performance algorithm to handle large amounts of data in real-time construction while preserving geometric details. The high computational cost of triangulation has hindered real-time industrial applications, prompting efforts to improve efficiency. To address this, a new improvement called Directive Searching has been proposed to enhance search efficiency by directing the search towards the target triangle cell and avoiding redundant searches. Another improvement, Heritable Initial, reduces the search amount by inheriting the start position from the last search. Combining Directive Searching and Heritable Initial into a new method called DSHI has led to a significant efficiency advancement, with a calculation efficiency improvement of nearly 300–3000 times compared to the ordinary Bowyer–Watson method. In terms of outlines extraction, DSHI has improved the extraction efficiency by 4–16 times compared to the ordinary Bowyer–Watson methods, while ensuring stable outlines results, and has also increased the extraction efficiency by 2–4 times compared to PCL. The DSHI method is also applied to actual ship component edge-grinding equipment, and its effect meets the shipbuilding process requirements. It could be inferred that the new method has potential applications in shipbuilding and other industries, offering satisfying efficiency and robustness for tasks such as automatic edge grinding.

Funder

Marine Equipment Foresight Innovation Union Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3