Next-Generation DNA Barcoding for Fish Identification Using High-Throughput Sequencing in Tai Lake, China

Author:

Mu Yawen12,Song Chao3,Yang Jianghua1ORCID,Zhang Yong2,Zhang Xiaowei1

Affiliation:

1. State Key Laboratory of Pollution Control & Resource, School of the Environment, Nanjing University Xianlin Campus, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China

2. Jiangsu Provincial Environmental Monitoring Center, Nanjing 210019, China

3. Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China

Abstract

Tai Lake, an important biodiversity hotspot of the lower reaches of the Yangtze River in China, possesses its characteristic fish fauna. Barcoding on native species is important for species identification and biodiversity assessment with molecular-based methods, such as environmental DNA (eDNA) metabarcoding. Here, DNA-barcoding coupled with high-throughput sequencing (HTS) and traditional Sanger sequencing was introduced to barcoding 180 specimens belonging to 33 prior morphological species, including the most majority of fish fauna in Tai Lake. HTS technology, on the one hand, significantly enhances the capture of barcode sequences of fish. The successful rate of fish barcoding was 74% and 91% in Sanger and HTS, respectively. On the other hand, the HTS output has a large number (64%) of insertions and deletions, which require strict bioinformatics processing to ensure that the ‘‘true’’ barcode sequence is captured. Cross-contamination and parasites were the primary error sources that compromised attempts at the DNA barcoding of fish species. The barcode gap analysis was 100% successful at delimiting species in all specimens. The automatic barcode gap discovery (ABGD) method grouped barcode sequences into 34 OTUs, and some deep divergence and closed species failed to obtain corresponding OTUs. Overall, the local species barcode library established by HTS barcoding here is anticipated to shed new light on conserving fish diversity in Tai Lake.

Funder

National Natural Science Foundation of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3