Bragg Scattering of Surface Gravity Waves Due to Multiple Bottom Undulations and a Semi-Infinite Floating Flexible Structure

Author:

Kar PrakashORCID,Koley SantanuORCID,Trivedi Kshma,Sahoo TrilochanORCID

Abstract

Surface gravity wave interaction with a semi-infinite floating elastic plate in the presence of multiple undulations has been studied under the assumption of linearized water wave theory and small amplitude structural response. The elastic plate is modeled using the Euler-Bernoulli beam equation, whilst the multiple undulations are categorized as an array of submerged trenches or breakwaters. The numerical solution obtained in finite water depth using the boundary element method is validated with the semi-analytic solution obtained under shallow water approximation. Bragg resonance occurs due to the scattering of surface waves by an array of trenches or breakwaters irrespective of the presence of the floating semi-infinite plate. The zero-minima in wave reflection occur when the width of the trench and breakwater is an integer multiple of 0.6 and 0.35 times wavelength, respectively, as the number of trenches or breakwaters increases. In contrast to trenches and breakwaters in isolation, non-zero minima in wave reflection occur in the presence of a semi-infinite plate. Moreover, the number of complete cycles in trenches is less than the number of complete cycles in breakwaters, irrespective of the presence of the floating structure. The frequency of occurrence of zero minimum in wave reflection is reduced in the presence of the semi-infinite plate, and wave reflection increases with an increase in rigidity of the floating plate. Time-dependent simulation of free surface displacement and plate deflection due to multiple undulations of seabed in the presence of the semi-infinite floating plate is demonstrated in different cases.

Funder

Medinipur College, West Bengal

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3