Abstract
Surface gravity wave interaction with a semi-infinite floating elastic plate in the presence of multiple undulations has been studied under the assumption of linearized water wave theory and small amplitude structural response. The elastic plate is modeled using the Euler-Bernoulli beam equation, whilst the multiple undulations are categorized as an array of submerged trenches or breakwaters. The numerical solution obtained in finite water depth using the boundary element method is validated with the semi-analytic solution obtained under shallow water approximation. Bragg resonance occurs due to the scattering of surface waves by an array of trenches or breakwaters irrespective of the presence of the floating semi-infinite plate. The zero-minima in wave reflection occur when the width of the trench and breakwater is an integer multiple of 0.6 and 0.35 times wavelength, respectively, as the number of trenches or breakwaters increases. In contrast to trenches and breakwaters in isolation, non-zero minima in wave reflection occur in the presence of a semi-infinite plate. Moreover, the number of complete cycles in trenches is less than the number of complete cycles in breakwaters, irrespective of the presence of the floating structure. The frequency of occurrence of zero minimum in wave reflection is reduced in the presence of the semi-infinite plate, and wave reflection increases with an increase in rigidity of the floating plate. Time-dependent simulation of free surface displacement and plate deflection due to multiple undulations of seabed in the presence of the semi-infinite floating plate is demonstrated in different cases.
Funder
Medinipur College, West Bengal
Department of Science and Technology, Ministry of Science and Technology, India
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献