Abstract
Trophic resource partitioning is one of the main drivers of adaptive radiation. The evolutionary diversification of large African barbs, the genus Labeobarbus, seems to be related to mouth polymorphism. The chisel-mouthed or scraping phenotype has repeatedly evolved within Labeobarbus. At least five ecomorphs with a scraping mouth morphology were detected in the waters of the Ethiopian Highlands and can be provisionally classified into two groups: (i) “Varicorhinus”-like, and (ii) “Smiling”-like. Previously, all Labeobarbus with a scraping-mouth morphology were considered to be periphyton feeders. Using data on morphology, diet and stable isotope ratios (C and N), we addressed the question: does a scraping-mouth morphology predict feeding on periphyton? Our study revealed that five scraper ecomorphs exhibited three main feeding modes: (i) periphyton-eating, (ii) herbivory–detritivory, and (iii) insectivory. Two cases of the parallel divergence of sympatric ecomorphs with distinct feeding modes (herbivory–detritivory vs. insectivory) were revealed in two geographically isolated basins. A significant difference in δ15N values was detected among sympatric scraper ecomorphs. A periphytonophagous scraper was rich in δ15N values that are comparable with those in sympatric piscivorous fish. This data sheds light on the possibility of the utilization of periphyton as a protein-rich food by fishes.
Funder
Russian Science Foundation
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献