Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture

Author:

Alonso Ricardo S.ORCID,Sittón-Candanedo InésORCID,Casado-Vara RobertoORCID,Prieto JavierORCID,Corchado Juan M.ORCID

Abstract

The Internet of Things (IoT) paradigm allows the interconnection of millions of sensor devices gathering information and forwarding to the Cloud, where data is stored and processed to infer knowledge and perform analysis and predictions. Cloud service providers charge users based on the computing and storage resources used in the Cloud. In this regard, Edge Computing can be used to reduce these costs. In Edge Computing scenarios, data is pre-processed and filtered in network edge before being sent to the Cloud, resulting in shorter response times and providing a certain service level even if the link between IoT devices and Cloud is interrupted. Moreover, there is a growing trend to share physical network resources and costs through Network Function Virtualization (NFV) architectures. In this sense, and related to NFV, Software-Defined Networks (SDNs) are used to reconfigure the network dynamically according to the necessities during time. For this purpose, Machine Learning mechanisms, such as Deep Reinforcement Learning techniques, can be employed to manage virtual data flows in networks. In this work, we propose the evolution of an existing Edge-IoT architecture to a new improved version in which SDN/NFV are used over the Edge-IoT capabilities. The proposed new architecture contemplates the use of Deep Reinforcement Learning techniques for the implementation of the SDN controller.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3