Abstract
One of the least used aspects of BIM (Building Information Modeling) is the ability to obtain the energy model of the building using the BIM methodology known as BIM 6D. This digital information model allows simulating the real energy behavior of the building and the improvement in the building’s lighting systems, both natural and artificial, in particular daylighting. In this way, the BIM 6D simulation allows us to make design and operation decisions for the building, not only for new buildings that must be, in accordance with current legislation, NZEB (Nearly Zero-Energy Building) but also for the rehabilitation of existing buildings. Particularly in buildings for sanitary use, BIM 6D allows an exhaustive analysis of the energy impact of said rehabilitation, guiding it towards an improvement in energy and light efficiency, which in turn provides greater quality and comfort in the use of the sustainable building. This subject of study is especially important in public buildings for hospital use. Buildings where energy efficiency and comfort, oriented towards optimal and efficient lighting, are two fundamental criteria highly appreciated by patients and citizens in general. Once the energy model of the building has been obtained, it is possible to study and identify possible alternatives to improve energy efficiency and improve lighting, as well as to analyze the possibilities of incorporating other more efficient forms of renewable energy, such as the use of daylight. In this work we can see how applying a set of simulated improvement actions in BIM 6D achieves an energy saving of 50% in general and up to 13% only by acting on lighting systems, allowing the decarbonization of buildings with high energy consumption, such as hospitals, and in turn, will lead to an improvement in the energy certification of these buildings; thus achieving a better and higher quality of habitability, using more efficient forms of lighting and transforming buildings into more sustainable spaces.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献