Static Light Scattering Monitoring and Kinetic Modeling of Polyacrylamide Hydrogel Synthesis

Author:

Gomes ORCID,Dias ORCID,Costa ORCID

Abstract

A kinetic model describing aqueous acrylamide homopolymerization and copolymerization of acrylamide with methylene bisacrylamide, leading to hydrogel formation, is presented and applied in the simulation of these reaction processes. This modeling approach is based on population balances of generating functions and, besides the crosslinking mechanisms inherent to network formation, other specific kinetic steps important in acrylamide polymerization (e.g., branching due to backbiting) are considered in the simulation tool developed. The synthesis of acrylamide polymers and hydrogels was performed at 26 °C and at 40 °C using two different initiation systems. The formation of such materials was monitored using in-line static light scattering (SLS), and the spatial inhomogeneity of the final hydrogels was also measured using this experimental technique. It is shown that the simulations are helpful in describing information provided by SLS in-line monitoring, namely in the early stages of polymerization with the transition from dilute to semi-dilute regime. Indeed, it finds a plausible match between the critical overlap polymer concentration and gelation, this later leading to the observed spatial heterogeneity of the hydrogels. Usefulness of the kinetic model for defining operation conditions (initial composition, semi-batch feed policies, chain transfer, etc.) in making the shift from gelation to the semi-dilute regime is discussed, and the extension of this approach to processes enabling a higher control of gelation (e.g., controlled radical polymerization) is also prospected.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3