Evaluation of Pyrolysis Reactivity, Kinetics, and Gasification Reactivity of Corn Cobs after Torrefaction Pretreatment

Author:

Xia Shengpeng,Zheng Anqing,Zhao Kun,Zhao Zengli,Li Haibin

Abstract

To reveal the effect of torrefaction pretreatment on pyrolysis and gasification reactivity of biomass, corn cob was first subjected to torrefaction pretreatment in a fixed-bed reactor at various reaction temperatures. The pyrolysis reactivity, kinetics, and gasification reactivity of torrefied corn cob were systematically assessed by various methods, proving that torrefaction pretreatment has a substantial influence on the physicochemical properties of corn cobs. The O/C and H/C molar ratios of corn cobs considerably drop with the increasing torrefaction temperature, and their higher heat-ing value (HHV) and energy density rise as well. It is found that torrefaction improves the pyrolysis reactivity of corn cobs because hemicellulose degradation is more severe than cellulose degradation during torrefaction, resulting in an increase in the percentage of cellulose in torrefied corn cobs. However, the severe depolymerization, polycondensation, and carbonization reaction during torre-faction of corn cobs at 280–300 °C can lead to a significant decline in the pyrolysis reactivity of corn cobs. Torrefaction pretreatment increases the pyrolysis activation energy of corn cobs, in addition to decreasing the char gasification reactivity of corn cob. The average char gasification reactivity of corn cobs drops when torrefaction severity increases. The passivation of active sites on the char surface may cause condensation and carbonation reactions of corn cobs during torrefaction. These findings provide new sights into the reasonable design of efficient torrefaction methods for appli-cation prior to pyrolysis and gasification of biomass.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Guangzhou

Youth Innovation Promotion Association

The Foundation of the State Key Laboratory of Coal Conversion

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3