Drag Reduction by Dried Malted Rice Solutions in Pipe Flow

Author:

Watanabe Keizo1,Ogata Satoshi1ORCID

Affiliation:

1. Department of Mechanical System Engineering, Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hinoshi 192-0397, Tokyo, Japan

Abstract

In this study, the friction factor of a turbulent pipe flow for dried rice malt extract solutions was experimentally reduced to that of a Newtonian fluid. The friction factor was measured for four types of solutions at different culture times and concentrations. The results indicate that the experimental data points of the test solutions diverged from the maximum drag reduction asymptote at and above Re√f ≅ 200~250 and aligned parallel to those of Newtonian fluids. This drag reduction phenomenon differed from that observed in artificial high-molecular-weight polymer solutions, called Type A drag reduction, in which the drag reduction level is dependent on the Reynolds number in the intermediate region. This is classified as a Type B drag reduction phenomenon in biopolymer solutions and fine solid particle suspensions. The order of drag reduction corresponded to approximately 5–50 ppm xanthan gum solutions, as reported previously. Furthermore, the velocity profile in a turbulent pipe flow was predicted using a semi-theoretical equation in which the friction factors were determined using the difference between the experimental results of the tested solutions and Newtonian fluids. The results indicate considerable thickening of the viscous sublayer in the turbulent pipe flow of the test solutions compared with that of Newtonian fluids.

Funder

research funding of a Grant-in-Aid for Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3