Fusion of Mid-Wave Infrared and Long-Wave Infrared Reflectance Spectra for Quantitative Analysis of Minerals

Author:

Desta Feven,Buxton Mike,Jansen Jeroen

Abstract

Accurate quantitative mineralogical data has significant implications in mining operations. However, quantitative analysis of minerals is challenging for most of the sensor outputs. Thus, it requires advances in data analytics. In this work, data fusion approaches for integrating datasets pertaining to the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions are proposed, aiming to facilitate more accurate prediction of SiO2, Al2O3, and Fe2O3 concentrations in a polymetallic sulphide deposit. Two approaches of low-level data fusion were applied to these datasets. In the first approach, the pre-processed blocks of MWIR and LWIR data were concatenated to form a fused data block. In the second approach, a prior variable selection was performed to extract the most important features from the MWIR and LWIR datasets. The extracted informative features were subsequently concatenated to form a new fused data block. Next, prediction models that link the mineralogical concentrations with the infrared reflectance spectra were developed using partial-least squares regression (PLSR), principal component regression (PCR) and support vector regression (SVR) analytical techniques. These models were applied to the fused data blocks as well as the individual (MWIR and LWIR) data blocks. The obtained results indicate that SiO2, Al2O3, and Fe2O3 mineral concentrations can be successfully predicted using both MWIR and LWIR spectra individually, but the prediction performance greatly improved with data fusion; where the PLSR, PCR, and SVR models provided good and acceptable results. The proposed approach could be extended for online analysis of mineral concentrations in different deposit types. Thus, it would be highly beneficial in mining operations, where indications of mineralogical concentrations can have significant financial implications.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Geometallurgy—A Route to More Resilient Mine Operations

2. Infrared Spectroscopy of Minerals and Related Compounds;Chukanov,2016

3. Fourier Transform Infrared Spectrometry;Griffiths,1986

4. Introduction to infrared spectroscopy;Smith,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3