A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds

Author:

Hui ZhenyangORCID,Cai Zhaochen,Liu Bo,Li Dajun,Liu Hua,Li Zhuoxuan

Abstract

Individual tree modeling for terrestrial LiDAR point clouds always involves heavy computation burden and low accuracy toward a complex tree structure. To solve these problems, this paper proposed a self-adaptive optimization individual tree modeling method. In this paper, we first proposed a joint neighboring growing method to segment wood points into object primitives. Subsequently, local object primitives were optimized to alleviate the computation burden. To build the topology relation among branches, branches were separated based on spatial connectivity analysis. And then the nodes corresponding to each object primitive were adopted to construct the graph structure of the tree. Furthermore, each object primitive was fitted as a cylinder. To revise the local abnormal cylinder, a self-adaptive optimization method based on the constructed graph structure was proposed. Finally, the constructed tree model was further optimized globally based on prior knowledge. Twenty-nine field datasets obtained from three forest sites were adopted to evaluate the performance of the proposed method. The experimental results show that the proposed method can achieve satisfying individual tree modeling accuracy. The mean volume deviation of the proposed method is 1.427 m3. In the comparison with two other famous tree modeling methods, the proposed method can achieve the best individual tree modeling result no matter which accuracy indicator is selected.

Funder

National Natural Science Foundation of China

China Post-Doctoral Science Foundation

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3