Above-Ground Biomass Estimation of Plantation with Different Tree Species Using Airborne LiDAR and Hyperspectral Data

Author:

Gao Linghan,Chai Guoqi,Zhang XiaoliORCID

Abstract

Forest above-ground biomass (AGB) is an important index to evaluate forest carbon sequestration capacity, which is very important to maintain the stability of forest ecosystems. At present, the wide use of remote sensing technology makes it possible to estimate the large-scale forest AGB accurately and efficiently. Airborne hyperspectral remote sensing data can obtain rich spectral information and spatial structure information on the forest canopy with the characteristics of high spatial and hyperspectral resolution. Airborne LiDAR data can describe the three-dimensional structure characteristics of a forest and provide vertical structure information related to biomass. Based on the characteristics of the two data sources, this study takes Gaofeng forest farm in Nanning, Guangxi, as the study area, Chinese fir, pine tree, eucalyptus and other broadleaved trees as the research object, and constructs the AGB estimation models of different tree species by fusing airborne LiDAR and hyperspectral features. Firstly, spectral features, texture features, vegetation index, wavelet transform features and edge features are extracted from hyperspectral data. Canopy structure features, point cloud structure features, point cloud density features and terrain features are extracted from airborne LiDAR data. Secondly, the random forest (RF) method is used to screen the features of the two sets of data, and the features with the highest importance are selected. Finally, based on the optimal features of the two data sources, the forest AGB model is constructed using the multiple stepwise regression method. The results show that the texture features extracted by wavelet transform can be used for AGB modeling. The AGB of eucalyptus has high correlation with height features derived from airborne LiDAR, the AGB of other broadleaved trees mostly depends on the wavelet transform texture features from airborne hyperspectral data, while the AGB of Chinese fir and pine tree has high correlation with both height features and spectral features. Feature-fusion-based LiDAR and hyperspectral data can greatly improve the accuracy of the AGB models. The accuracy of the optimal AGB models of Chinese fir, pine tree, eucalyptus and other broadleaved trees is 0.78, 0.95, 0.72 and 0.89, respectively. In conclusion, more accurate estimation results can be obtained by combining active and passive remote sensing data for forest AGB estimation, which provides a solution for carbon storage assessment and forest ecosystem assessment.

Funder

National Natural Science Foundation of China

National Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3