Micro-Doppler Parameters Extraction of Precession Cone-Shaped Targets Based on Rotating Antenna

Author:

Wang ZhihaoORCID,Luo YingORCID,Li Kaiming,Yuan Hang,Zhang Qun

Abstract

Micro-Doppler is regarded as a unique signature of a target with micro-motions. The sophisticated recognition of the cone-shaped targets can be realized through the micro-Doppler effect. However, it is difficult to extract the micro-motion features perpendicular to the radar line of sight (LOS) effectively. In this paper, a micro-Doppler parameters extraction method of the cone-shaped targets is put forward based on the rotating antenna. First, a new radar configuration is proposed, in which an antenna rotates uniformly on a fixed circle, thus producing Doppler frequency shift. Second, the expression of the micro-Doppler frequency shift induced by the precession cone-shaped target is derived. Then, the micro-Doppler curves of point scatterers at the cone top and bottom are separated by the smoothness of the curves, and the empirical mode decomposition (EMD) method is utilized for the detection and estimation of the coning frequency. Finally, the micro-motion components perpendicular to the radar LOS are inverted by the peak of micro-Doppler frequency curve. Simulation results prove the effectiveness and robustness of the proposed method.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3