Choosing the Right Horizontal Resolution for Gully Erosion Susceptibility Mapping Using Machine Learning Algorithms: A Case in Highly Complex Terrain

Author:

Yang AnnanORCID,Wang ChunmeiORCID,Yang Qinke,Pang Guowei,Long Yongqing,Wang Lei,Yang Lijuan,Cruse Richard M.ORCID

Abstract

Gully erosion susceptibility (GES) maps are essential for managing land resources and erosion control. Choosing the optimal horizontal resolution in GES mapping is a challenge. In this study, the optimal resolution for GES mapping in a complex loess hilly area on the Chinese Loess Plateau was tested using two machine learning algorithms. Unmanned aerial vehicle (UAV) images with a 9 cm resolution and GNSS RTK field-measured data were employed as base datasets, and 11 factors were used in the machine learning models. A series of horizontal resolutions, from 0.5–30 m, was used to determine which was the optimal level and how the resolution influenced the GES mapping. The results showed that the optimal resolution for GES mapping was 2.5–5 m in the loess hilly area, for both the random forest (RF) and extreme gradient-boosting (XGBoost) machine learning algorithms employed in this study. High resolutions overestimated the probability of gully erosion in stable regions, and it became difficult to identify gully and non-gully regions at too-coarse resolutions. The variable importance for GES mapping changed with the resolution and varied among variables. Slope gradient, land use, and contributing area were, in general, the three most critical factors. Land use remained an important factor at all the tested resolution levels. The importance of the slope gradient was underestimated at coarse resolutions (10–30 m), and the importance of the contributing area was underestimated at resolutions that were comparatively fine (0.5–1 m). This study provides an essential reference for selecting the optimal resolution for gully mapping, and thus, offers support for approaches attempting to map gullies using UAV.

Funder

National Natural Science Foundation of China

SKL Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3